Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
Anal Chim Acta ; 1304: 342524, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637033

RESUMO

The inappropriate use of antibiotics undoubtedly poses a potential threat to public health, creating an increasing need to develop highly sensitive tests. In this study, we designed a new type of porphyrin metal-organic frameworks (Fe TCPP(Zn) MOFs) with homogeneous catalytic sites. The ferric-based metal ligands of Fe TCPP(Zn) MOFs acted as co-reaction accelerators, which effectively improved the conversion efficiency of H2O2 on the surface of MOFs, then increased the concentration of •OH surrounding porphyrin molecules to achieve self-enhanced electrochemiluminescence (ECL). Based on this, an aptasensor for the specific detection of kanamycin (KAN) in food and environmental water samples was constructed in combination with resonance energy transform (RET), in which Fe TCPP(Zn) MOFs were used as luminescence donor and AuNPs were used as acceptor. Under the best conditions, there was a good linear relationship between the ECL intensity and the logarithm of KAN concentration with a detection limit of 0.28 fM in the range of 1.0 × 10-7-1.0 × 10-13 M, demonstrating satisfactory selectivity and stability. At the same time, the complexity of the detection environment was reduced, which further realized the reliable analysis of KAN in milk, honey and pond water. Overall, this innovative self-enhanced ECL strategy provides a novel approach for constructing efficient ECL systems in MOFs, and also extends the application of MOFs to the analysis and detection of trace antibiotics in food and the environment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Metaloporfirinas , Canamicina/análise , Ouro , Domínio Catalítico , Peróxido de Hidrogênio , Medições Luminescentes , Antibacterianos/análise , Técnicas Eletroquímicas , Água , Limite de Detecção
2.
Analyst ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563766

RESUMO

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.

3.
Small ; : e2311895, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660823

RESUMO

The conformation of molecules and materials is crucial in determining their properties and applications. Here, this work explores the reversible transformation between two distinct conformational isomers in metal nanoclusters. This work demonstrates the successful manipulation of a controllable and reversible isomerization of Au18SR14 within an aqueous solution through two distinct methods: ethanol addition and pH adjustment. The initial driver is the alteration of the solution environment, leading to the aggregation of Au18SR14 protected by ligands with smaller steric hindrance. At the atomic level, the folding mode of the unique Au4SR5 staple underpins the observed structural transformation. The reversal of staple conformation leads to color shifting between green and orange-red, and tailors a second emission peak at 725 nm originating from charge transfer from the thiolate to the Au9 core. This work not only deepens the understanding of the surface structure and dual-emission of metal nanoparticles, but also enhances the comprehension of their isomerization.

4.
Mol Plant Pathol ; 25(4): e13456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619864

RESUMO

The spindle assembly checkpoint (SAC) proteins are conserved among eukaryotes safeguarding chromosome segregation fidelity during mitosis. However, their biological functions in plant-pathogenic fungi remain largely unknown. In this study, we found that the SAC protein MoMad1 in rice blast fungus (Magnaporthe oryzae) localizes on the nuclear envelope and is dispensable for M. oryzae vegetative growth and tolerance to microtubule depolymerizing agent treatment. MoMad1 plays an important role in M. oryzae infection-related development and pathogenicity. The monopolar spindle 1 homologue in M. oryzae (MoMps1) interacts with MoMad1 through its N-terminal domain and phosphorylates MoMad1 at Ser-18, which is conserved within the extended N termini of Mad1s from fungal plant pathogens. This phosphorylation is required for maintaining MoMad1 protein abundance and M. oryzae full virulence. Similar to the deletion of MoMad1, treatment with Mps1-IN-1 (an Mps1 inhibitor) caused compromised appressorium formation and decreased M. oryzae virulence, and these defects were dependent on its attenuating MoMad1 Ser-18 phosphorylation. Therefore, our study indicates the function of Mad1 in rice blast fungal pathogenicity and sheds light on the potential of blocking Mad1 phosphorylation by Mps1 to control crop fungal diseases.


Assuntos
Ascomicetos , Fosforilação , Virulência , Serina
5.
Biosens Bioelectron ; 256: 116236, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608494

RESUMO

Au nano-clusters (Au NCs) were promising electrochemiluminescence (ECL) nano-materials. However, the small size of Au NCs presented a challenge in terms of their immobilization during the construction of an ECL biosensing platform. This limitation significantly hindered the wider application of Au NCs in the ECL field. In this work, we successfully used the reducibility of Ti3C2 to fabricate in situ a self-enhanced nano-probe Ti3C2-TiO2-Au NCs. The strategy of in situ generation not only improved the immobilization of Au NCs on the probe but also eliminated the requirement of adding reducing agents during preparation. In addition, in situ generated TiO2 could serve as a co-reaction accelerator, shortening the electron transfer distance between S2O82- and Au NCs, thereby improving the utilization of intermediates and enhancing the ECL response of Au NCs. The constructed ECL sensing platform could achieve sensitive detection of polynucleotide kinase (PNK). At the same time, the 5'-end phosphate group of DNA phosphorylation could chelate with a large amount of Ti on the surface of Ti3C2, thereby achieving the goal of specific detection of PNK. The sensor based on self-enhanced ECL probes had a broad dynamic range spanning for PNK detection from 10.0 to 1.0 × 107 µU mL-1, with a limit of detection of 1.6 µU mL-1. Moreover, the ECL sensor showed satisfactory detection performance in HeLa cell lysate and serum. This study not only provided insights for addressing the issue of ECL luminescence efficiency in Au NCs but also presented novel concepts for ECL self-enhancement strategies.


Assuntos
Técnicas Biossensoriais , Ouro , Limite de Detecção , Medições Luminescentes , Polinucleotídeo 5'-Hidroxiquinase , Titânio , Titânio/química , Técnicas Biossensoriais/métodos , Humanos , Medições Luminescentes/métodos , Ouro/química , Polinucleotídeo 5'-Hidroxiquinase/análise , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Substâncias Luminescentes/química
6.
Mikrochim Acta ; 191(5): 259, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605266

RESUMO

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is  0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nitritos , Elementos de Transição , Humanos , Ouro/química , Nanopartículas Metálicas/química , Hidrogéis , Titânio/química , DNA/química
7.
Plants (Basel) ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611457

RESUMO

Rice blast disease, caused by the fungus Magnaporthe oryzae, is a significant threat to rice production. Resistant cultivars can effectively resist the invasion of M. oryzae. Thus, the identification of disease-resistant genes is of utmost importance for improving rice production. Autophagy, a cellular process that recycles damaged components, plays a vital role in plant growth, development, senescence, stress response, and immunity. To understand the involvement of autophagy-related genes (ATGs) in rice immune response against M. oryzae, we conducted a comprehensive analysis of 37 OsATGs, including bioinformatic analysis, transcriptome analysis, disease resistance analysis, and protein interaction analysis. Bioinformatic analysis revealed that the promoter regions of 33 OsATGs contained cis-acting elements responsive to salicylic acid (SA) or jasmonic acid (JA), two key hormones involved in plant defense responses. Transcriptome data showed that 21 OsATGs were upregulated during M. oryzae infection. Loss-of-function experiments demonstrated that OsATG6c, OsATG8a, OsATG9b, and OsATG13a contribute to rice blast resistance. Additionally, through protein interaction analysis, we identified five proteins that may interact with OsATG13a and potentially contribute to plant immunity. Our study highlights the important role of autophagy in rice immunity and suggests that OsATGs may enhance resistance to rice blast fungus through the involvement of SA, JA, or immune-related proteins. These findings provide valuable insights for future efforts in improving rice production through the identification and utilization of autophagy-related genes.

9.
J Agric Food Chem ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642053

RESUMO

Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.

10.
Food Chem ; 448: 139003, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547710

RESUMO

Chloramphenicol (CAP) is known to be harmful to the environment and food, posing a threat to human health. Developing an effective and convenient method for detecting CAP is crucial. An electrochemiluminescence (ECL) biosensor has been designed for sensitive detection of CAP. The improved ECL behavior was attributed to the synergistic effect of N and P co-doped Ti3C2-Apt1 (N, P-Ti3C2-Apt1) nanoprobes and high intensity focused ultrasound (HIFU) pretreatment. The doping of N and P could improve the electrochemical performance of Ti3C2. HIFU pretreatment generated more reactive oxygen species (ROS) in the luminol-O2 system. N, P-Ti3C2 could aggregate and catalyze ROS, causing an increase in ECL intensity. Furthermore, N, P-Ti3C2 as a carrier loaded more aptamer, which could recognize CAP with high specificity. The detection limit was 0.01 ng/mL. This biosensor has been successfully applied in milk and environmental water samples, highlighting its potential in the field of food and environmental analysis.

11.
mBio ; : e0008624, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534157

RESUMO

Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE: Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.

12.
Int J Biol Macromol ; 261(Pt 2): 129841, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309401

RESUMO

The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.


Assuntos
Fusarium , Fatores de Transcrição , Retroalimentação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fusarium/fisiologia , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia
13.
Rice (N Y) ; 17(1): 14, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351214

RESUMO

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases for rice crops, significantly affecting crop yield and quality. During the infection process, M. oryzae secretes effector proteins that help in hijacking the host's immune responses to establish infection. However, little is known about the interaction between the effector protein AvrPik-D and the host protein Pikh, and how AvrPik-D increases disease severity to promote infection. In this study, we show that the M. oryzae effector AvrPik-D interacts with the zinc finger-type transcription factor WG7 in the nucleus and promotes its transcriptional activity. Genetic removal (knockout) of the gene WG7 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after treatments with chitin. In addition, the hormone level of SA and JA, is increased and decreased respectively in WG7 KO plants, indicating that WG7 may negatively mediate resistance through salicylic acid pathway. Conversely, WG7 overexpression lines reduce resistance to M. oryzae. However, WG7 is not required for the Pikh-mediated resistance against rice blast. In conclusion, our results revealed that the M. oryzae effector AvrPik-D targets and promotes transcriptional activity of WG7 to suppress rice innate immunity to facilitate infection.

14.
RSC Adv ; 14(8): 5207-5215, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332799

RESUMO

The behavior of copper (Cu) diffusion at different storage temperatures of heavily boron-doped silicon substrates is investigated. The surface Cu concentration of the substrate with quantitative Cu contamination exhibits an initial increase followed by a subsequent decrease upon storage at 25 °C and 85 °C. The surface Cu, originating from the out-diffusion, can be effectively removed through RCA cleaning. The polysilicon film, prepared by low-pressure chemical vapor deposition (LPCVD) on the back of the substrate, exhibits a pronounced inhibitory effect on the out-diffusion of Cu. This phenomenon can be attributed to the effective gettering of Cu by both grain boundaries and disordered grain structures within the polycrystalline silicon film. Additionally, the multilayered structure of the polysilicon film exhibits enhanced gettering capabilities. The enhanced gettering effectiveness achieved by the multilayer polysilicon film can be attributed to an increased number of interfaces between layers.

15.
Appl Microbiol Biotechnol ; 108(1): 228, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386129

RESUMO

Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Masculino , Humanos , Micotoxinas/genética , Virulência
16.
Heliyon ; 10(4): e25617, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38380023

RESUMO

An emerging number of studies have recently revealed the correlation between burn injuries and psychological disorders. Gut microbiota and inflammatory factors may play a vital role in this process. Nevertheless, there are few studies conducted to disclose the potential mechanism of the gut microbiota between depression and burn injuries. In this study, we constructed a burn model of C57BL/6 mice, which showed that the symptom of depression became more and more severe with the burn of mice lasted longer. Meanwhile, there are significant differences of composition of gut microbiota among mice before and after burn. Then, we tested the inflammatory factors in the brain and peripheral blood, which showed an increased expression of Iba1, VWF, TNF-α and IL-6, and a decreased expression of IL-10 in burn mice. In addition, the expression of zonula occludens-1 (ZO-1) in cecum showed a down-regulation in burn mice, which indicated impaired intestinal barrier function. Lastly, the crossing fecal microbiota transplantation (FMT) and cohousing experiment were conducted to determine the functions of cross-transplantation of fecal microbiota on the depressive-type behaviours in burned mice. According to the score of Tail suspension test (TST), the burn mice were divided into two groups: Resilient mice (no-depressed mice) and Abnormal mice (depressed mice). After abnormal mice were transplanted with fecal microbiota of resilient mice, the symptom of depression was improved, and the expression of TNF-α, IL-6 and IL-10 return to normal levels (P < 0.05). On the contrary, after resilient mice were transplanted with fecal microbiota of abnormal mice both the TST scores and inflammatory factor developed depressive-type changes. In conclusion, our study demonstrated the changes of gut microbiota and inflammatory factors in depressed burn mice and non-depressed burn mice. The gut microbiota dysbiosis could impaired intestinal barrier function and lead to neuroinflammation, and this phenomenon could be significantly mitigated by FMT.

17.
Nat Genet ; 56(1): 136-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082204

RESUMO

Most fresh bananas belong to the Cavendish and Gros Michel subgroups. Here, we report chromosome-scale genome assemblies of Cavendish (1.48 Gb) and Gros Michel (1.33 Gb), defining three subgenomes, Ban, Dh and Ze, with Musa acuminata ssp. banksii, malaccensis and zebrina as their major ancestral contributors, respectively. The insertion of repeat sequences in the Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 RGA2 (resistance gene analog 2) promoter was identified in most diploid and triploid bananas. We found that the receptor-like protein (RLP) locus, including Foc race 1-resistant genes, is absent in the Gros Michel Ze subgenome. We identified two NAP (NAC-like, activated by apetala3/pistillata) transcription factor homologs specifically and highly expressed in fruit that directly bind to the promoters of many fruit ripening genes and may be key regulators of fruit ripening. Our genome data should facilitate the breeding and super-domestication of bananas.


Assuntos
Fusarium , Musa , Musa/genética , Fusarium/genética , Triploidia , Melhoramento Vegetal , Fatores de Transcrição/genética , Doenças das Plantas/genética
18.
Talanta ; 270: 125574, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142613

RESUMO

Developing a highly selective and sensitive analysis strategy for lincomycin (LIN) is of great significance for environmental protection and food safety. Herein, we reported a novel electrochemiluminescence (ECL) aptasensor based on Ti3C2 QDs-1T/2H MoS2 nano-hybrid luminophore for detection of LIN. The hybridization of Ti3C2 QDs and 1T/2H MoS2 endowed nanocomposite with structural and compositional advantages for boosting the ECL performance of QDs by about three times. This enhancement could be attributed to the remarkable electrocatalytic activity and high conductivity exhibited by 1T/2H MoS2. Secondly, the great surface area of 1T/2H MoS2 is conducive to the high dispersion of Ti3C2 QDs, and its good conductivity could promote charge transfer. On the other hand, the excellent catalytic performance of 1T/2H MoS2 could facilitate the reduction of S2O82- to produce more radical, which significantly enhance the ECL signal of Ti3C2 QDs. Given these features, a sensor for detection of LIN was established based on specific recognition between target and aptamer. The sensor showed a good linear relationship (0.05 ng mL-1 ∼100 µg mL-1) with a detection limit as low as 0.02 ng mL-1. It is worth noting that this work has been validated in testing milk samples, exhibiting great potential application prospects in food analysis.


Assuntos
Molibdênio , Titânio , Catálise , Condutividade Elétrica , Lincomicina
19.
J Mech Behav Biomed Mater ; 148: 106212, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913623

RESUMO

Dental resin restorations commonly fail because of fractures and secondary caries. The aim of this research was to synthesize a novel low-shrinkage dental resin with antibacterial and self-healing properties. The low-shrinkage dental resin was obtained by incorporating a 20 wt% anti-shrinkage mixture of an expanding monomer 3,9-diethyl-3,9-dimethylol -1,5,7,11-tetraoxaspiro[5,5] undecane and an epoxy resin monomer diallyl bisphenol A diglycidyl ether (1:1, referred as "UE") and different mass fractions of self-healing antibacterial microcapsules (0%, 2.5%, 5%, 7.5%, and 10%) were incorporated into the matrix to prepare multifunctional dental resin. Polymerization shrinkage, mechanical properties, antibacterial activity, self-healing ability, and cytotoxicity of this dental resin were evaluated. The polymerization volumetric shrinkage of resin containing 20 wt% UE and 7.5 wt% microcapsules was reduced by 30.12% (4.13% ± 0.42%) compared with control. Furthermore, it exhibited high antibacterial activity and a good self-healing efficiency of 71% without adversely affecting the mechanical property and cell viability. This novel multifunctional dental resin with low polymerization shrinkage and excellent antibacterial activity and self-healing capability has potential application as a dental resin material to decrease the incidence of fractures and secondary caries.


Assuntos
Antibacterianos , Resinas Compostas , Cápsulas , Teste de Materiais , Antibacterianos/farmacologia , Polimerização , Metacrilatos
20.
Plants (Basel) ; 12(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960103

RESUMO

The high-affinity K+ transporter (HAK) family, the most prominent potassium transporter family in plants, which involves K+ transport, plays crucial roles in plant responses to abiotic stresses. However, the HAK gene family remains to be characterized in quinoa (Chenopodium quinoa Willd.). We explored HAKs in quinoa, identifying 30 members (CqHAK1-CqHAK30) in four clusters phylogenetically. Uneven distribution was observed across 18 chromosomes. Furthermore, we investigated the proteins' evolutionary relationships, physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of the CqHAKs family members. Transcription data analysis showed that CqHAKs have diverse expression patterns among different tissues and in response to abiotic stresses, including drought, heat, low phosphorus, and salt. The expressional changes of CqHAKs in roots were more sensitive in response to abiotic stress than that in shoot apices. Quantitative RT-PCR analysis revealed that under high saline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves; under alkaline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves, and CqHAK6, CqHAK9, CqHAK13, CqHAK23, and CqHAK29 were significantly induced in roots. Our results establish a foundation for further investigation of the functions of HAKs in quinoa. It is the first study to identify the HAK gene family in quinoa, which provides potential targets for further functional study and contributes to improving the salt and alkali tolerance in quinoa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...